Location Strategies
Key classes
1. LocationManager
2. LocationListener
주 : 이 설명서는 android.location에 포함된 platform location API에 대한 사용 설명이다 . 구글 플레이 서비스의 일부로서 platform location API는 자동으로 위치파악, 사용자의 거동, 또는 위치의 정확도를 처리하는 보다 강력한 프레임 워크를 제공한다.
이 API의 매개 변수에 따라 위치 업데이트 일정도 조정이 가능 하며 보다 나은 정확도 및 보다 적은 배터리 소모를 도모 할 수 있다.
이 API에 대한 보다 자세한 내용은 Google Location Services for Android.을 참조
안드로이드를위한 위치 인식 응용 프로그램을 개발할 경우, 사용자의 위치를 파악을 위해 GPS 및 Android's Network Location Provider 사용 한다. 이중 GPS가 가장 정확하지만 이는 단지 옥외에서만 작동되며, 또한 배터리 전원을 많이 소비하고 피 측정물체의 위치를 빠르게 반환하지 않는다. 이에 반하여 Android's Network Location Provide는, 실내와 실외 작동하는 방식으로 위치 정보를 제공하며, 기지국 및 Wi-Fi 신호를 사용하여 사용자의 위치를 결정하므로 빠른 응답과, 배터리 소모량이 적다. 응용 프로그램에서 사용자 위치를 얻을려 할 경우, GPS 및 Network Location Provider 또는 이중 하나만을 사용할 수 있다.

사용자 위치 결정

모바일 장치에서 사용자의 위치를 얻는 것은 간단한 일이 아니다. 아래와 같은 이유로 위치 판독 (소스에 관계없이)은 오류가 난다.
 위치 소스의 무리:
측정치의 좌표값은 GPS, 셀 ID, 및 Wi-Fi의 세가지로부터 얻는다. 이 3가지를 사용할 때 고려 사항은 속도 및 , 배터리 효율의 효율 이다
· 사용자의 움직임
사용자 위치는 계속 변하기 때문에, 사용자 위치의 이동을 빈버하게 추정 해야 한다.
· 정확도 변화
각 위치 소스에서 오는 위치 추정값의 정확도는 일정치가 않다. 10초전에 측정된 값이 지금 측정 한 값보다 정확할 수 가 있다는 말이다.
이러한 문제들로 인하여는사용자 위치 판독 값에 오차가 발생 할 수 있다. 이 문서는 보다 정확한 위치값을 얻기 위해 도움이되는 정보를 제공한다. 또한 응용 프로그램에서 사용할 수있는 아이디어를 제공한다.
 위치 업데이트 요청

Before addressing some of the location errors described above, here is an introduction to how you can obtain user location on Android.
Getting user location in Android works by means of callback. You indicate that you'd like to receive location updates from the LocationManager ("Location Manager") by calling requestLocationUpdates(), passing it a LocationListener. Your LocationListener must implement several callback methods that the Location Manager calls when the user location changes or when the status of the service changes.
For example, the following code shows how to define a LocationListener and request location updates:
// Acquire a reference to the system Location Manager
LocationManager locationManager = (LocationManager) this.getSystemService(Context.LOCATION_SERVICE);

// Define a listener that responds to location updates
LocationListener locationListener = new LocationListener() {
 public void onLocationChanged(Location location) {
 // Called when a new location is found by the network location provider.
 makeUseOfNewLocation(location);
 }

 public void onStatusChanged(String provider, int status, Bundle extras) {}

 public void onProviderEnabled(String provider) {}

 public void onProviderDisabled(String provider) {}
 };

// Register the listener with the Location Manager to receive location updates
locationManager.requestLocationUpdates(LocationManager.NETWORK_PROVIDER, 0, 0, locationListener);
The first parameter in requestLocationUpdates() is the type of location provider to use (in this case, the Network Location Provider for cell tower and Wi-Fi based location). You can control the frequency at which your listener receives updates with the second and third parameter—the second is the minimum time interval between notifications and the third is the minimum change in distance between notifications—setting both to zero requests location notifications as frequently as possible. The last parameter is your LocationListener, which receives callbacks for location updates.
To request location updates from the GPS provider, substitute GPS_PROVIDER for NETWORK_PROVIDER. You can also request location updates from both the GPS and the Network Location Provider by calling requestLocationUpdates() twice—once for NETWORK_PROVIDER and once for GPS_PROVIDER.
Requesting User Permissions
In order to receive location updates from NETWORK_PROVIDER or GPS_PROVIDER, you must request user permission by declaring either the ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION permission, respectively, in your Android manifest file. For example:
<manifest ... >
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 ...
</manifest>
Without these permissions, your application will fail at runtime when requesting location updates.
Note: If you are using both NETWORK_PROVIDER and GPS_PROVIDER, then you need to request only the ACCESS_FINE_LOCATION permission, because it includes permission for both providers. (Permission for ACCESS_COARSE_LOCATION includes permission only for NETWORK_PROVIDER.)
Defining a Model for the Best Performance

Location-based applications are now commonplace, but due to the less than optimal accuracy, user movement, the multitude of methods to obtain the location, and the desire to conserve battery, getting user location is complicated. To overcome the obstacles of obtaining a good user location while preserving battery power, you must define a consistent model that specifies how your application obtains the user location. This model includes when you start and stop listening for updates and when to use cached location data.
Flow for obtaining user location
Here's the typical flow of procedures for obtaining the user location:
1. Start application.
2. Sometime later, start listening for updates from desired location providers.
3. Maintain a "current best estimate" of location by filtering out new, but less accurate fixes.
4. Stop listening for location updates.
5. Take advantage of the last best location estimate.
Figure 1 demonstrates this model in a timeline that visualizes the period in which an application is listening for location updates and the events that occur during that time.
[image: http://developer.android.com/images/location/getting-location.png]
Figure 1. A timeline representing the window in which an application listens for location updates.
This model of a window—during which location updates are received—frames many of the decisions you need to make when adding location-based services to your application.
Deciding when to start listening for updates
You might want to start listening for location updates as soon as your application starts, or only after users activate a certain feature. Be aware that long windows of listening for location fixes can consume a lot of battery power, but short periods might not allow for sufficient accuracy.
As demonstrated above, you can begin listening for updates by calling requestLocationUpdates():
String locationProvider = LocationManager.NETWORK_PROVIDER;
// Or, use GPS location data:
// String locationProvider = LocationManager.GPS_PROVIDER;

locationManager.requestLocationUpdates(locationProvider, 0, 0, locationListener);
Getting a fast fix with the last known location
The time it takes for your location listener to receive the first location fix is often too long for users wait. Until a more accurate location is provided to your location listener, you should utilize a cached location by calling getLastKnownLocation(String):
String locationProvider = LocationManager.NETWORK_PROVIDER;
// Or use LocationManager.GPS_PROVIDER

Location lastKnownLocation = locationManager.getLastKnownLocation(locationProvider);
Deciding when to stop listening for updates
The logic of deciding when new fixes are no longer necessary might range from very simple to very complex depending on your application. A short gap between when the location is acquired and when the location is used, improves the accuracy of the estimate. Always beware that listening for a long time consumes a lot of battery power, so as soon as you have the information you need, you should stop listening for updates by calling removeUpdates(PendingIntent):
// Remove the listener you previously added
locationManager.removeUpdates(locationListener);
Maintaining a current best estimate
You might expect that the most recent location fix is the most accurate. However, because the accuracy of a location fix varies, the most recent fix is not always the best. You should include logic for choosing location fixes based on several criteria. The criteria also varies depending on the use-cases of the application and field testing.
Here are a few steps you can take to validate the accuracy of a location fix:
· Check if the location retrieved is significantly newer than the previous estimate.
· Check if the accuracy claimed by the location is better or worse than the previous estimate.
· Check which provider the new location is from and determine if you trust it more.
An elaborate example of this logic can look something like this:
private static final int TWO_MINUTES = 1000 * 60 * 2;

/** Determines whether one Location reading is better than the current Location fix
 * @param location The new Location that you want to evaluate
 * @param currentBestLocation The current Location fix, to which you want to compare the new one
 */
protected boolean isBetterLocation(Location location, Location currentBestLocation) {
 if (currentBestLocation == null) {
 // A new location is always better than no location
 return true;
 }

 // Check whether the new location fix is newer or older
 long timeDelta = location.getTime() - currentBestLocation.getTime();
 boolean isSignificantlyNewer = timeDelta > TWO_MINUTES;
 boolean isSignificantlyOlder = timeDelta < -TWO_MINUTES;
 boolean isNewer = timeDelta > 0;

 // If it's been more than two minutes since the current location, use the new location
 // because the user has likely moved
 if (isSignificantlyNewer) {
 return true;
 // If the new location is more than two minutes older, it must be worse
 } else if (isSignificantlyOlder) {
 return false;
 }

 // Check whether the new location fix is more or less accurate
 int accuracyDelta = (int) (location.getAccuracy() - currentBestLocation.getAccuracy());
 boolean isLessAccurate = accuracyDelta > 0;
 boolean isMoreAccurate = accuracyDelta < 0;
 boolean isSignificantlyLessAccurate = accuracyDelta > 200;

 // Check if the old and new location are from the same provider
 boolean isFromSameProvider = isSameProvider(location.getProvider(),
 currentBestLocation.getProvider());

 // Determine location quality using a combination of timeliness and accuracy
 if (isMoreAccurate) {
 return true;
 } else if (isNewer && !isLessAccurate) {
 return true;
 } else if (isNewer && !isSignificantlyLessAccurate && isFromSameProvider) {
 return true;
 }
 return false;
}

/** Checks whether two providers are the same */
private boolean isSameProvider(String provider1, String provider2) {
 if (provider1 == null) {
 return provider2 == null;
 }
 return provider1.equals(provider2);
}
Adjusting the model to save battery and data exchange
As you test your application, you might find that your model for providing good location and good performance needs some adjustment. Here are some things you might change to find a good balance between the two.
Reduce the size of the window
A smaller window in which you listen for location updates means less interaction with GPS and network location services, thus, preserving battery life. But it also allows for fewer locations from which to choose a best estimate.
Set the location providers to return updates less frequently
Reducing the rate at which new updates appear during the window can also improve battery efficiency, but at the cost of accuracy. The value of the trade-off depends on how your application is used. You can reduce the rate of updates by increasing the parameters in requestLocationUpdates() that specify the interval time and minimum distance change.
Restrict a set of providers
Depending on the environment where your application is used or the desired level of accuracy, you might choose to use only the Network Location Provider or only GPS, instead of both. Interacting with only one of the services reduces battery usage at a potential cost of accuracy.
Common application cases

There are many reasons you might want to obtain the user location in your application. Below are a couple scenarios in which you can use the user location to enrich your application. Each scenario also describes good practices for when you should start and stop listening for the location, in order to get a good reading and help preserve battery life.
Tagging user-created content with a location
You might be creating an application where user-created content is tagged with a location. Think of users sharing their local experiences, posting a review for a restaurant, or recording some content that can be augmented with their current location. A model of how this interaction might happen, with respect to the location services, is visualized in figure 2.
[image: http://developer.android.com/images/location/content-tagging.png]
Figure 2. A timeline representing the window in which the user location is obtained and listening stops when the user consumes the current location.
This lines up with the previous model of how user location is obtained in code (figure 1). For best location accuracy, you might choose to start listening for location updates when users begin creating the content or even when the application starts, then stop listening for updates when content is ready to be posted or recorded. You might need to consider how long a typical task of creating the content takes and judge if this duration allows for efficient collection of a location estimate.
Helping the user decide on where to go
You might be creating an application that attempts to provide users with a set of options about where to go. For example, you're looking to provide a list of nearby restaurants, stores, and entertainment and the order of recommendations changes depending on the user location.
To accommodate such a flow, you might choose to:
· Rearrange recommendations when a new best estimate is obtained
· Stop listening for updates if the order of recommendations has stabilized
This kind of model is visualized in figure 3.
[image: http://developer.android.com/images/location/where-to-go.png]
Figure 3. A timeline representing the window in which a dynamic set of data is updated each time the user location updates.
Providing Mock Location Data

As you develop your application, you'll certainly need to test how well your model for obtaining user location works. This is most easily done using a real Android-powered device. If, however, you don't have a device, you can still test your location-based features by mocking location data in the Android emulator. There are three different ways to send your application mock location data: using Eclipse, DDMS, or the "geo" command in the emulator console.
Note: Providing mock location data is injected as GPS location data, so you must request location updates from GPS_PROVIDER in order for mock location data to work.
Using Eclipse
Select Window > Show View > Other > Emulator Control.
In the Emulator Control panel, enter GPS coordinates under Location Controls as individual lat/long coordinates, with a GPX file for route playback, or a KML file for multiple place marks. (Be sure that you have a device selected in the Devices panel—available from Window > Show View > Other > Devices.)
Using DDMS
With the DDMS tool, you can simulate location data a few different ways:
· Manually send individual longitude/latitude coordinates to the device.
· Use a GPX file describing a route for playback to the device.
· Use a KML file describing individual place marks for sequenced playback to the device.
For more information on using DDMS to spoof location data, see Using DDMS.
Using the "geo" command in the emulator console
To send mock location data from the command line:
1. Launch your application in the Android emulator and open a terminal/console in your SDK's /tools directory.
2. Connect to the emulator console:
telnet localhost <console-port>
3. Send the location data:
· geo fix to send a fixed geo-location.
This command accepts a longitude and latitude in decimal degrees, and an optional altitude in meters. For example:
geo fix -121.45356 46.51119 4392
· geo nmea to send an NMEA 0183 sentence.
This command accepts a single NMEA sentence of type '$GPGGA' (fix data) or '$GPRMC' (transit data). For example:
geo nmea $GPRMC,081836,A,3751.65,S,14507.36,E,000.0,360.0,130998,011.3,E*62
For information about how to connect to the emulator console, see Using the Emulator Console.

image1.png

image2.png

image3.png

